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Abstract. Within the framework of an effective φ4-theory, an attempt is made to study diquark stars and
their stability with extended scalar diquarks (ESD). In this context, an equation of state (EOS) for the ESD
gas is obtained. We find the EOS for the ESD gas to be stiffer than that for a point-like diquark and/or
quark gas. This EOS is then used to investigate various properties of the diquark stars. In particular, the
mass and radius of the maximum mass star with ESD matter turn out to be larger than those obtained with
point-like diquark and/or quark matter. However, they are in conformity with the predictions available for
soliton and boson stars. The stability of ESD stars against radial oscillations is also investigated.

1 Introduction

It is now well known that from the point of view of study-
ing hadronic systems at the level of energy density of
2GeV/fm3 (i.e., greater than the standard nuclear mat-
ter density) and/or at a temperature of about 200MeV,
there exists compelling evidence [1] to describe them in
terms of their constituents, the quarks and gluons. This
is so because the interactions among quarks and gluons
at such high densities become weak at short distances
mainly due to the colour screening effect [2]. It is thus
likely that the systems undergo a transition from hadronic
to a new phase of strongly interacting coloured quarks and
gluons in their unconfined state which is called “quark–
gluon plasma” (QGP) and the experimental research into
this new state of matter is the central goal of the present
and planned relativistic heavy ion collisions (RHIC) be-
ing carried out at CERN and at BNL. As a result, there
has been considerable interest in recent years to study the
RHIC and subsequently the QGP. Due to the fact that
in a QGP phase the quarks and gluons may not be non-
interacting, quarks might pair up non-perturbatively and
create diquarks, mainly due to spin–spin interactions.
There may be intermediate phases (may be even for a
shorter duration), namely the diquark–quark gluon phase
and the diquark–gluon phase, between the two extreme
regimes of hadron and quark phases. Moreover, the im-
portance of quark pairing, particularly in the high-density
regime, has also been emphasized earlier (see, for example,
[3]). It is in this context that the role of diquarks becomes
of the utmost importance. In fact, the possibility of the
existence of these intermediate phases was first pointed
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out and explored by Ekelin and Frederiksson [3] and later
on emphasised by others [4–8].
In our recent works [8,9] (from now on referred to as

KKM), important theoretical support to the idea that a
QGP under certain thermodynamic conditions may con-
tain a significant fracton of extended scalar diquarks
(ESD) has been put forward. It is also noticed that ESD
matter is energetically more favoured not only as com-
pared to point-like scalar diquark matter but also to quark
matter. No doubt the treatment of diquarks as point-like
objects is a mathematically idealised situation, but bar-
ring a few exceptions of some investigations of point-like
diquarks, the study of the role of diquarks has not yet
been carried out in full detail, especially considering that
the diquarks may turn out to be extended objects.
The purpose of this paper is twofold: Firstly to study

diquark stars and their stability with ESD matter and
secondly to highlight its possible effects in the context of
stellar studies. For this purpose, we use an effective φ4-
theory along the lines of Donoghue and Sateesh (DS) [4],
and extend our earlier work [8] with a view to studying
diquark stars and their stability with ESD matter. In par-
ticular, a model for the diquark [10], accounting for its
size, and in conformity with several ground state proper-
ties of baryons, is employed in the present work. The basic
assumption in using these phenomenological models [4,8]
is that the bound diquarks in nucleons retain the same
properties in a medium such as QCD plasma. The plan
of the paper is as follows. Since it is of relevance here, we
briefly review the role of quark degrees of freedom in un-
derstanding the early universe in Sect. 2, and we highlight
the role of diquarks in star formation in Sect. 3. We then
deduce an equation of state for the ESD gas within the
framework of the φ4-theory in Sect. 4. Section 5 is devoted
to the study of ESD stars by solving the Oppenheimer–
Volkoff equations. The results are discussed in Sect. 6, and
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aspects of the stability of ESD stars are investigated in
Sect. 7. Finally, concluding remarks are made in Sect. 8.

2 A brief review of the understanding of the
early universe and quark degrees of freedom

There is a strong belief that the universe mainly consisted
of a very compact (superdense) matter [11] in the early
stages of its history. Such high densities were treated be-
fore as irrelevant for the normal range of physics, but later
on, in order to explain several astrophysical and cosmolog-
ical situations (i.e., the centre of a neutron star, supernova
explosions or black holes etc.), the role of such high den-
sities became of vital importance. During the 1940s there
were speculations that the central densities of some stel-
lar objects might be higher than those of nuclear matter.
Oppenheimer and Volkoff [12] accounted for the relativis-
tic effects to understand the massive, superdense neutron
cores. Later, quark degrees of freedom at such densities
have been emphasised to exist [13] and were found to play
an important role in the formation of quark stars. Collins
and Perry [2] have extensively discussed the picture of the
three quark structure of baryons and its importance for
the understanding of the superdense matter expected to
be present in several stellar objects such as in the cores
of neutron stars. They have strongly suggested a possible
phase transition from neutron matter to a uniform quark
matter at such high densities. Since then many authors
have considered quark matter [1,19] and have discussed
[14–19] various properties of quark stars and/or neutron
stars with a core of quark matter. In spite of all these de-
velopments over the years, it appears impossible [15] to
predict with confidence the interior constitution of neu-
tron stars. As a matter of fact, the physical behaviour of
matter under such extreme densities has not been com-
pletely understood so far. Also, the effects that are of
minor importance at nuclear densities may be of major
importance at such high densities, and the physical quan-
tities describing [20] the interior as well as the surface of
the neutron star (or for that matter of any stellar object)
depends highly on the possible states of the dense matter
in its core.
From the point of view of a field theoretic approach

there have been speculations that the scalar fields not
only play [21,22] a critical role in the evolution of the
early universe but also may explain [23] some important
cosmological problems, like the problem of the cosmolog-
ical missing mass. It is worthwhile mentioning here that
of all possible states, scalar diquarks (i.e., the colour an-
titriplet, spin zero diquarks) have been found to be [24]
energetically more favoured. It is strongly suggested [25]
that the states of scalar diquarks play important roles for
the explosive phase, and subsequently their condensation
in a QGP phase is responsible for the ultimate collapse of
the infalling stellar matter. The states of scalar diquarks
in a QCD plasma are also expected [25] to play an im-
portant role in the core of a would-be supernova. This is
put forward because neither nucleons at about 1 fm apart

nor the phase transition to a QGP are found to be violent
enough to affect the explosion which is to take place.
In another context, in the literature “quark pairing”

is considered [3] analogously to the formation of Cooper
pairs in superconductors. Quarks are said [25] to show
an even “un-natural pairing up” to form diquarks. Such
bindings are possible in the presence of repulsive force be-
tween the quarks if some of the forces are more repulsive
than others. No doubt it appears that such an analogy
would suggest weak binding forces among the quarks, but
the latter also have the colour degrees of freedom besides
having formed a bound state (diquark). In the present
work, we consider the regime just above the deconfine-
ment where the forces between the quarks are expected to
be fairly strong – to the extent that a large fraction or all
the quarks pair up to give rise to a bound state, thereby
improving upon the EOS. Once the boson system of such
paired but extended objects is formed, studies in these di-
rections become of considerable interest (see, for example,
[3] and references therein). However, here we shall look for
the possible role of ESD in the form of matter and also
in the context of stars with that matter in the following
sections.

3 Role of diquarks in star formation

DS [4] have explored the possibilities of diquark cluster
formation in a QGP in the density regime higher than that
required for the deconfinement. They treat the quarks at
such high densities as a free Fermi gas and take into ac-
count the spin–spin interactions [26] among them. They
then transform the quark interactions into an effective φ4-
theory for the scalar diquarks thus formed. In fact, the
theory describes the diquarks as self-interacting bosons
by fixing the coupling constant λ in the Lagrangian for
a colour triplet field by using the φ4-theory. They fix the
mass of the scalar diquark by theN–∆mass difference and
calculate the energy dependence of the interacting scalar
diquark gas as a function of density by using a Gaussian
momentum distribution for the scalar diquark gas. Finally,
they arrive at the very significant conclusion that the en-
ergy of the scalar diquark gas at the density range above
deconfinement is considerably lower than that of the quark
gas, and at still higher densities the diquarks break up into
quarks. Thus a quark phase occurs again.
Kastor and Traschen (KT) [6], using the model of DS,

discuss the astrophysical realisation of the diquark matter
and also of a neutron star with that matter in its core.
They calculate the pressure of a diquark gas from the di-
quark energy obtained by DS, describe the formation of
diquark stars, and deduce various other properties of neu-
tron stars. They consider a mixture of quarks and diquarks
surrounded with and without a low density neutron enve-
lope. Treating the core as consisting of diquark matter or
as a mixture of quark and diquark matter in different pro-
portions, they reproduce several features of neutron stars.
For an isoscalar mixture of quarks (equal number of up
and down quarks) they find that the fraction of quark
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pairs drops to half at about eight times the nuclear mat-
ter density. However, for a zero charge mixture of up and
down quarks coming from pure neutron matter, they find
that the fraction of quark pairs drops to two thirds only
at ten times the nuclear density. Horvath et al. [7] also
have considered the model of DS and discussed the pos-
sibility of having a self-bound, stable state of the diquark
matter in abundance in stellar objects. Consequently, the
diquark matter would play an important role or rather a
dominant role in a variety of compact energetic astrophys-
ical systems such as neutron stars.

4 Equation of state for ESD matter

Following KKM [8], the distribution of ESD in a QGP in
terms of a modified Gaussian distribution function F (k)
of diquarks is of the form

F (k) =
[
N/2(2πa2m2

D)
3/2

]
((k/b)2 + 1)−2

× exp(−k2/2a2m2
D) , (1)

where N is the number of quarks, a is the Gaussian width
parameter,mD is the mass of the diquark, and b = (2/Boc)
with Boc as the first Bohr radius [10]. The F (k) is nor-
malised [4,28] as

∫
d 3kF (k) = N/2 and the total energy

of the ESD gas turns out to be

ED = I1 + (λ/2V )I2
2 , (2)

where the momentum space integral I1 =
∫
d 3k(k2 +

m2
D)

1/2F (k). The integral I2 is obtained by multiplying
the integrand I1 by (k2 +m2

D)
−1. In terms of the quark

number density ρ(≡ N/V ), where V is the volume occu-
pied by the quarks, the energy of ESD gas can be expressed
as

ED =
NmD

4π

[
2
√
2π a−aP1 + λa−6(ρ/m3

D)P
2

2

]
, (3)

where P1 =
∫ ∞
0 dk′k′2 (k′2 + 1)1/2g̃(k′) with g̃(k′) =

g(k′) exp(−k′2/2a2), and g(k′) = ((mDk
′/b)2 + 1)−2. The

integral P2 is obtained by multiplying the integrand of P1
by (k′2 + 1)−1. Note that the variable k of (1) is replaced
by (mDk

′) in (3) for dimensional considerations.
The expression for the pressure for the ESD gas is cal-

culated by using the relation p = −(∂ED/∂V )N and it
turns out to be

p = (I2(3− 2I4)(λ/2) + V I3) /3V 2 , (4)

where I2 is the same as in (2) but the integrals I3 and I4
are now obtained by multiplying the integrand of I1 by
k2(k2 +m2

D)
−1 and k2(k2 +m2

D)
−2, respectively.

As far as the expression (4) for the pressure of the
ESD gas is concerned: it can be expressed in terms of the
matter density ρm as

p = αρD + βρ2
D . (5)

Fig. 1. The equation of state for ESD matter (continuous
curve). Results corresponding to neutron matter (double dot-
dashed curve) with spin-2 meson coupling constant f2 = 0.6
and QCD derived quark matter (dot-dashed curve) are shown
for comparison from Anand et al. [16]. Results for neutron
matter of Pandharipande and Smith [20] (dotted curve) and of
Malone et al. [20] (dashed curve) are also shown for comparison

Here ρD(≡ mD · N/2V ) is the diquark matter density,
α = x1P ′

2 and β = 1.5x1λP ′
1 (3P

′
1 − 2P ′

3 ) with x1 =
(1/6

√
2π)a−3m−4

D , P ′
1 =

∫ ∞
0 dk k2(k2 + m2

D)
−1/2 g̃′(k),

g̃′(k) = g′(k) exp(−k2/2m2
Da

2), g′(k) = ((k/b)2+1)−2 and
the integrals P ′

2 and P ′
3 are obtained by multiplying the

integrand P ′
1 by k

2 and k2(k2 +m2
D)

−1, respectively. For
the ESD gas the pressure p as a function of matter density
ρm is shown in Fig. 1. It should be noted that in this fig-
ure (and for that matter in all subsequent figures) the fol-
lowing conversion factors are used: 1 dyne/cm2 = 4.793×
10−27MeV4 = 5.586× 10−40M�/km3 and 1 g/cm3 =
4.314× 10−6MeV4 = 5.028× 10−19M�/km3.
Regarding the relative magnitude of the terms in the

equation of state (EOS) (5) note that the ratio β/α turns
out to be of the order of 10−5, implying a very small con-
tribution of the second term in (5). For this reason the
p vs. ρm curve in Fig. 1 for the ESD matter turns out to
be nearly a straight line. As far as the study of the EOS
for stellar matter in the presence of quark degrees of free-
dom is concerned several studies have been carried out
[14–17,19] in the literature. For example, for the sake of
comparison the results of Anand et al. [16] are shown in
Fig. 1. The dot-dashed curve corresponds to the results for
the quark matter and the dashed curve is for the neutron
matter with a spin-2 meson coupling constant f2 = 0.6. In
this figure, the classic results of Pandharipande and Smith
[20] and of Malone et al. [20] for neutron matter are also
shown for comparison. In addition, the numerical values
for the EOS are also displayed in Table 1 mainly for the
sake of a more precise comparison of results for the quark
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and neutron matter at a later stage. It should be empha-
sised here that the present EOS allows only for a limited
range of p and ρD in the case of ESD gas. However, this
window is somewhat wider than the one obtained [6] for
the point-like diquarks.

5 Extended diquark stars: calculational details

Having thus obtained the EOS (5) for the ESD matter in
the preceding section we now proceed to study the struc-
ture and hydrostatic equilibrium of ESD stars using the
well-known Tolman–Oppenheimer–Volkoff [27,12] (TOV)
equations, namely

dp(r)
dr

= −GM(r)
r2

[ρm(r) + p(r)]
[
1 + 4πr3p(r)/M(r)

]
·
[
1− 2GM(r)

r

]−1

, (6)

dM(r)
dr

= 4πr2ρm(r) , (7)

where the various symbols have their usual meanings. For
this purpose, we use the EOS (5) and integrate the coupled
equations (6) and (7) numerically. In order to handle these
equations the boundary conditions used here are that the
centre be free from singularities and the pressure or matter
density at the surface is fixed such that

M(0) = 0 ; p(r = R) = p (ρm = ρm,surface) , (8)

where R is the radius of the configuration. Here, ρm,surface
is taken as the cut-off density, which in the present case is
the allowed minimum value of ρm for the ESD formation
and the same is obtained by minimising the energy of the
ESD gas, ED, from (3) with respect to the Gaussian width
parameter a. For the details of the calculations of this part
we refer to our earlier works [8,28]. However, to deduce
the properties of the ESD stars the computation of the
TOV equations (6) and (7) is carried out keeping in mind
the boundary conditions (8) and using the EOS (5) in
the numeric form. For this purpose, we use the following
prescription.
(i) The central density (ρc) and some initial value of

the radius r (say r = r0 = 0.01 km) and accordingly the
mass from (4πr3cρc/3) are used as input for ρm, r and M ,
respectively. Note that ρc is taken from the allowed range
of ρm for ESD formation in QGP, and the TOV equations
(6) and (7) are numerically solved simultaneously form(r)
and p(r). Corresponding to this value of ρm, p from the
EOS is also used as input.
(ii) While M so obtained becomes the input for the

second round, a search for ρm from the EOS is made cor-
responding to the output value of p using either the nu-
meric EOS or by using the standard interpolation formula
(see [20])

[(ln p− ln pj)/(ln ρm − ln ρj)]
= (ln pj+1 − ln pj)/(ln ρj+1 − ln ρj) , (9)

where pj and pj+1 are the values of the pressure between
which the output value p lies, ρj and ρj+1 are the corre-
sponding values of ρm in the EOS. Note that the formula
(9) is helpful when the output value of p does not match
with a value of p in the numeric EOS. In fact, this nor-
mally is the case. The value of ρm so obtained along with
the value of p now becomes the input for the next round
which starts at a newer value of the radius.
(iii) The above process is repeated until all the values

of p and ρm in the numeric EOS are covered in accor-
dance with the second boundary conditions in (8). In this
way, one obtains the properties of the configuration cor-
responding to a given input value of ρc.
(iv) A set of numerical results is obtained for the al-

lowed values of ρm by treating ρm as ρc in the input.
Finally, a maximum mass configuratoin is searched from
among the results for all values of ρc.

6 Results and discussion

The results of the calculations are shown in Figs. 1–4. In
these figures the continuous curves indicate the results of
the present calculations for the ESD case. A plot of the
EOS for the ESD gas, which has already been described,
is depicted in Fig. 1. In order to determine the maximum
mass of ESD stars, the configuration mass as a function of
the radius R and the central density ρc is plotted in Figs. 2
and 3, respectively. For comparison, results obtained by
other authors based on different models, namely, those
of KT [6] (dashed curves) for a zero charge mixture of
diquarks and quarks with (curve a) and without (curve b)
a low density neutron envelope, of Ghosh and Sahu [17] for
the bag model (dotted curve) and the two flavour chiral
dielectric quark model without gluon interactions (dot-
dahsed curve), and of Chandra and Goyal [18] (double
dot-dashed curve in Fig. 2 and dashed curve in Fig. 4) for
soliton stars, are also displayed along with our results. The
variation of the configuration mass as a function of the
central density is shown in Fig. 3 for all the cases discussed
in Fig. 2 except for the case of a soliton star of Chandra
and Goyal [18]. However, with regard to the results of
other authors the abscissa is scaled down by a factor of
ten and the ordinate is scaled up by a factor of 4 in Fig. 3.
It is to be mentioned here that in Fig. 2 of all the curves the
trend of curve (b) appears to be different in the sense that
the overall mass of the star decreases with the increase in
its radius for a zero charge mixture of diquarks and quarks
even without a low-density neutron envelope.
Density profiles for the ESD stars for some typical val-

ues of ρc which are used as input in the computation of the
TOV equations (6) and (7) are shown in Fig. 4. In this fig-
ure, curves (a), (b), (c) and (d) correspond to the values of
ρc of 81.96, 2.92, 1.49 and 0.5 (in units of 1014 g/cm3), re-
spectively. Note that the curve (c) here corresponds to the
maximum mass 8.92M� obtained for the ESD stars (cf.
Fig. 2). The corresponding radius in our model turns out
to be 50.7 km. The density profiles obtained for the soli-
ton star [18] corresponding to the maximum mass (dashed
curve) is also shown for comparison. It is interesting to
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Table 1. Equation of state for ESD matter and its comparison with the results of other authors obtained for neutron and
quark matter (ρ and p are in units of 1014 g/cm3 and 1035 dyne/cm2, respectively)

S. Present Pandharipande Malone Anand
NO. calculations and Smith [20] et al. [20] et al. [16]

(ESD matter) [neutron (solid model) matter] [neutron (model V N) matter] (quark matter)
ρ p ρ p ρ p ρ p

1. 0.1345 0.1235 1.890 0.0634 1.700 0.0119 2.606 0.3487
2. 0.2491 0.2287 2.42 0.0876 2.55 0.0293 19.76 4.996
3. 0.2947 0.2706 3.57 0.298 3.42 0.060 68.91 18.77
4. 0.3713 0.3409 4.97 0.614 4.31 0.109 176.32 49.38
5. 0.4969 0.4561 6.04 0.926 5.20 0.183 375.8 106.8
6. 0.8441 0.7748 6.83 1.18 7.04 0.409 709.6 203.5
7. 0.9431 0.8656 8.75 1.18 8.95 0.761 1227.0 354.1
8. 1.155 1.060 10.7 1.86 10.9 1.26 1987.0 575.7
9. 1.488 1.366 14.3 3.327 13.1 1.99 3054.0 887.8
10. 2.921 2.678 17.8 4.98 15.3 2.85 4503.0 1312.0
11. 3.836 3.516 26.7 10.6 17.6 3.71 6415.0 1873.0
12. 5.814 5.325 35.7 17.0 20.1 4.92 8881.0 2598.0
13. 6.039 5.531 53.5 32.0 22.6 6.23
14. 8.230 7.532 71.3 48.2 27.0 8.58
15. 14.06 12.85 107.0 82.3 31.6 11.4
16. 19.59 17.89 143.0 117.0 41.9 18.5
17. 25.72 23.46 178.0 153.0 53.5 27.6
18. 50.50 45.96 196.0 171.0 77.0 48.3
19. 81.97 74.48 – – 106.0 76.2

note that not only the trend, but also the magnitudes
of the densities for ESD stars are in agreement with the
predictions available for the soliton stars [29]. For small
values of ρc the behaviour of the density profiles becomes
flat as is the case with the predictions of other authors,
particularly for the soliton stars [18].
We emphasise here that the trend and the behaviour

of the results for the ESD stars, by and large, are the
same as the predictions of other models for quark and/or
diquark stars as well as soliton stars, except for the fact
that the magnitudes for M and R in our case turn out to
be large. However, as mentioned above, these figures are
in agreement with the predictions made for soliton and
boson stars [29,30]. In fact, the prediction of maximum
mass star of mass 20M� and radius 60 km with the soliton
model has been made by Cottingham and Mau [29] by
introducing a temperature dependence in the Lee–Wick
model [30]. It may also be mentioned that in a way the
solitonic character, to some extent, is built in [35] the φ4-
theory used in our case. It can further be argued that the
large mass and radius for the ESD stars obtained in our
model can be attributed to the mutual interactions among
scalar diquarks because scalar fields perhaps are capable
of explaining the missing mass of the universe and can
play a critical role [21,23] in the evolution of the early
universe.

7 Stability of ESD stars

The stability of stellar objects against their constituents
and the corresponding interactions has been the subject
of study for a long time [31,32]. A theory of stability ac-
commodating these features a priori can be examined ei-
ther in terms of oscillations of the radial coordinate [32,
33] and/or be assumed to be due to the occurrence of the
phase transition(s) (in the present case it may be either
from the quark–gluon phase to the diquark–gluon phase
or from the diquark–gluon phase to the hadronic phase).
While the former situation provides a necessary condition
for the stability of the stellar objects in terms of their
gravitational mass M and central density ρc through

dM
dρc

> 0 , (10)

the latter, on the other hand, can possibly offer a suffi-
ciency condition in this regard. Condition (10) suggests
[32] the value of the adiabatic index Γ̄1 > 4/3, which,
after accounting for the post-Newtonian approximation,
becomes [32]

Γ̄1 > (4/3) + 2GMκ/(RC2) , (11)

where κ ∼ 1 and depends on the structure of the star.
Note that two out of the three typical values of ρc listed
in Table 3 conform to condition (10) as is clear from Fig. 3.
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Fig. 2. Maximum mass configuration as a function of the ra-
dius. Dashed curves a and b are the results of KT [6] for a zero
charge mixture of diquarks and quarks with and without a low-
density neutron envelope, respectively. Dotted and dot-dashed
curves are from Ghosh and Sahu [17]. The double dot-dashed
curve is from Chandra and Goyal [18]. The continuous curve
represents the results of the present ESD model

Another aspect through which the stability of the ESD
stars can be looked into, is in terms of microscopic collapse
[34] studied through the inequalities

p ≥ 0 , and
dp
dρ

≥ 0 , (12)

where (dp/dρ)1/2 is a measure of the hydrodynamic phase
velocity of sound waves in the stellar matter under consid-
eration. The present results while conforming to these in-
equalities (cf. Fig. 1 and Table 1), however, provide some-
what larger values of the speed of sound cs given by cs =
(dp/dρ)1/2. Present results for cs, along with the ones so
obtained by other atuhors for the neutron and quark mat-
ter are shown in Table 2. In this regard, it may be men-
tioned that while there exists a controversy on the validity
of the inequality c2s = (dp/dρ) ≤ c2 in the literature (see,
e.g. [34]), the causality through this inequality has lim-
ited the value of the mass corresponding to the maximum
mass configuration to 3M� (see, e.g., Ellis et al. [14] and
Kalogera and Baym [34]) which is much smaller than the
one obtained in the present work or in the works pertain-

Fig. 3. Plot for mass versus central density. Dashed curves rep-
resent the results of KT [6] and dotted and dot-dashed curves
are from Ghosh and Sahu [17]. Continuous curves are the re-
sults of the present ESD model. Note that the abscissa is scaled
down by a factor of ten and the ordinate is scaled up by a factor
of four with regard to the results of other authors

Fig. 4. Density profile for diquark and soliton stars. The
dashed curve represents the results of Chandra and Goyal [18]
for the soliton star based on the Lee–Wick model and contin-
uous curves represent the results of the present ESD model



S.K. Karn et al.: Diquark stars with extended scalar diquarks and their stability 493

Table 2. Velocity of sound, cs = (dp/dρ)1/2, in the stellar matter (in units
of 1010 cm/s) as obtained from various equations of state in the different
density ranges

S. Density range cs = (dp/dρ)1/2

No. (1015 g/cm3)
Present Pandharipande Malone Anand

and Smith [20] et al. [20] et al. [16]
1. ρ < 5.0 2.999 2.287 2.154 1.646
2. 5.0 < ρ ≤ 8.0 2.943 3.049 1.355 2.588
3. 8.0 < ρ ≤ 12.0 3.906 3.410 3.102 –

ing to soliton and boson stars. For further details on this
and related aspects, we refer to the work of Karn [9].
In the present work, we have also computed the right

hand side of inequality (11) for different mass–radius con-
figurations of ESD stars, obtained by solving the TOV
equations (6) and (7). It is found that the maximum value
obtained for this quantity corresponds to the star having
ρc = 3.84× 1014 g/cm3 which leads to M = 8.57M� and
R = 46.5 km. Interestingly, for values of ρc less than this,
our results show a decrease in the values of the correction
term 2GMκ/(RC2) whereas for values of ρc higher than
this the correction term attains almost a constant value
which is approximately the same as the one obtained by
Kettner et al. [32] for a charm star corresponding to mass
and radius ∼ 1.3M� and ∼ 8 km, respectively. However,
the trend of this correction term obtained here is just the
opposite to the one reported by Haensel et al. [33] for the
strange quark stars.
The pressure averaged value of the adiabatic index,

Γ̄1, is also calculated in the present model by using the
formula [32]

Γ̄1 =

[∫ R

0
Γ1(r)p(r)r2dr

] / [∫ R

0
p(r)r2dr

]
, (11′)

for three typical values of ρc, namely 0.497, 1.488 and
2.921 in units of 1014 g/cm3, where the middle value corre-
sponds to the maximum mass configuration of ESD stars,
namely M = 8.9M� and R = 50.7 km. The behaviour of
Γ1(r) as a function of ρ(r) is investigated and it is found [9]
that the window of Γ1(r) becomes broader as one proceeds
from the higher values of ρc to the lower ones. In other
words, for an ESD star with higher values of ρc, Γ1(r)
starts from smaller values and attains nearly a constant
value with the decrease of ρ(r) as compared to the stars
with smaller values of ρc. The values of Γ̄1 obtained from
(11′) turn out to be small as compared to those obtained
from the right hand side of inequality (11) as shown in
Table 3.

8 Summary and conclusions

We have studied diquark stars with ESD matter, within
the framework of an effective φ4-theory, and their stability.
In this context, an equation of state for an ESD gas is

Table 3. Results for Γ̄1 corresponding to three typical values
of ρc

S. . ρc(1014 g/cm3) Γ̄1 (from (11′) (4/3) + 2κGM/(RC2)
No. (cf. (11))
1. 0.497 0.99989 1.7362
2. 1.488 0.99987 1.8524
3. 2.921 0.99991 1.8750

obtained and various properties of ESD stars, namely the
M vs. R curve, the M vs. ρc curve and the behaviour
of the density profiles are studied. For the ESD stars, it
is found that the maximum mass which such a star can
attain is 8.92M� and the radius is 50.7 km corresponding
to the central density 1.488×1014 g/cm3. The magnitudes
of M and R for a maximum mass star with ESD matter
turn out to be larger than those obtained with point-like
diquarks and/or quarks. However, they are in agreement
with the predictions made for boson and soliton stars. No
doubt in the study of the evolution of such massive stars
the “stability factor” is crucial as the stars with M >
7–8M� are expected to be instable (see, for example, Ellis
et al. [14] and Chandrasekar [31]). However, the detailed
study of this factor with reference to an ESD star is still
desirable.
In other words, the evolution of the massive stars is

expected to follow a somewhat different theoretical frame-
work than that of the less massive ones. As a consequence,
the ESD matter either in the form of a star or stars with
ESD and/or quark matter in the core may play an im-
portant role in: (i) a would-be supernova and/or the pro-
cess of black hole formation; (ii) the collapse of the in-
falling stellar matter due to condensation of ESD in the
diquark–gluon plasma as speculated by Frederiksson [25];
and (iii) understanding the early phases of the origin of
the universe. Furthermore, for these superdense and mas-
sive systems having diquarks as constituents, the study of
the phenomena of Bose–Einstein condensations [3], colour
superconductivity [3] and the phase transitions with ref-
erence to the chiral symmetry [36] would raise very in-
teresting possibilities. While these speculations have been
around in the literature for some time, more precise stud-
ies in this regard, particularly within the present frame-
work, are desirable and we hope to address some of them
in the future.
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